If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+6w-96=0
a = 2; b = 6; c = -96;
Δ = b2-4ac
Δ = 62-4·2·(-96)
Δ = 804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{804}=\sqrt{4*201}=\sqrt{4}*\sqrt{201}=2\sqrt{201}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{201}}{2*2}=\frac{-6-2\sqrt{201}}{4} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{201}}{2*2}=\frac{-6+2\sqrt{201}}{4} $
| (x)^0.5=0.78 | | 1.5x+3=1.5x+5 | | x(4x5)=140 | | 0.6(x+3)=3x | | 6(7x+7)=-252 | | 2+3a=1111-3=88/2=4a=4 | | 2x+7=2x+11 | | 5x=-x-16 | | 3^9x=295 | | 2(5x-10=4(2x-5 | | 2(5x=8)=66 | | 23o=2.07 | | .-6(9+4x)=-30 | | 6=2x-26 | | 18x-108=6 | | 4d +2=9 | | 0.23o=2.07 | | 91+92+(x+6)+126+128+130=720 | | 7k+9=5 | | 24x-108=-(-6x+10)+4 | | 17x+4=-21 | | (x-2)+(x+2)=180 | | x/10=58 | | 4x+20=3-18 | | 6w−15=9 | | 10w+6w=-84 | | 22x-99=-(-6x+10)+4 | | ((x/3)-2+6=7x-3 | | 1250=600+x | | 5/9(f+32)=26 | | 7+3x=28+6x | | ((x/3-2)+6=7x-3 |